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1. Introduction
Image super-resolution (SR) refers to the techniques

that increase the resolution from some low-resolution
(LR) images. SR techniques are needed in various fields
due to the limits of hardware like sensors and cam-
eras. For example, in medical imaging, SR is applied
to stabilize Magnetic Resonance Imaging [2]. In the
application of surveillance, SR is used to improve the
facial recognition result from the LR image obtained
by security cameras [8].

There have been many researches focusing on SR
and many methods has been well developed. In gen-
eral, these methods can be divided into two categories:
classical computer vision methods and deep learning
methods. Typically, the classical method includes
prediction-based methods, edged-based methods, sta-
tistical methods, etc [7]. However, in recent years, deep
learning based SR have received more attention and
have shown promising performance on various bench-
marks of SR. With the development of deep learning,
the techniques used to SR are also upgraded. Early
researches typically used Convolutional Neural Net-
works(CNN), while more recent researches use Gen-
erative Adversarial Nets(GAN) [4].

For our project, we build our Efficient Cascading
Dense Network (ECDN) mainly on CARN [1]. We
choose this method because compared with other CNN
for SR task, CARN achieved a more ideal balance be-
tween the training speed and accuracy [1]. But still,
CARN is not so effective. It requires more than 4 GPU-
days to reach a good performance. Also, their param-
eter size is too large and can be reduced while preserv-
ing the performance to the large extent. Our ECDN,
as well as its slimmer version, ECDN_M, achieves its
performance with almost half of the original parame-
ters.

In order to improve the CARN, we chose methods
from [7], and refine the design of CARN. For exam-
ple, we use iterative up-and-down sampling as our SR
framework. Inspired by its cascading design, we de-
velop our network based on denseNet, as it’s a good
choice to reduce model size and reuse feature maps.

Finally, we try to integrate the perceptual similarity
(Learned Perceptual Image Patch Similarity [9]) into
our model, using it as the loss function instead of tra-
ditional pixel-based metric like peak signal-to-noise ra-
tio(PSNR).

Our main contribution in this research can three-
fold:

• Based on CARN, we develop two new models,
ECDN and ECDN_M, that can achieve same per-
formance while reducing model size considerably.

• We use perceptual similarity to measure the model
performance, which is a more reasonable selection
mechanism.

• We tried iterative up-and-down sampling frame-
works, which improves the performance without
adding too much overheads.

2. Approach
In order to learn a mapping function from low reso-

lution image ILR to high resolution image IHR, we have
two main models: ECDN and ECDN-M. ECDN is de-
signed to be a high-performance SR model, but with
less parameters and convolution layers compared with
traditional DenseNet SR model. ECDN-M is adopted
from ECDN with good performance but much less pa-
rameters and faster training speed.

As shown in Figure 1(A), ECDN is composed of
several parts: the entry and exit layers for matching
input and output dimensions, three dense blocks for
learning features, and one upsampling layer for recon-
structing high resolution details. We use ReLu as acti-
vation function, and each convolution block is followed
by a ReLu except for the exit layer. Notice that the
outputs of intermediary dense blocks are cascaded and
sent as inputs into higher dense blocks. The cascaded
outputs will go through a 1 × 1 convolution layer be-
fore being used as inputs of next dense block, so that
even in a deep network, the depth of dense block in-
puts is reasonable. This cascading network structure
is adopted from the model provided by [1], which is a
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Figure 1. Structure of Proposed Networks

cascading residual network containing three local cas-
cading blocks. This cascading residual network can
quickly propagate information from lower to higher lay-
ers with multiple shortcuts. We apply post-upsampling
framwork in ECDN to save parameters.

As shown in Figure 1(B), ECDN-M is adopted
from ECDN, which still use the entry and exit layers
for matching input and output dimensions, and three
dense blocks for learning features. The main differ-
ence is that the dense blocks of ECDN-M have less
convolution layers, and ECDN-M applies iterative up-
and-down sampling framework where an up-and-down
layer is applied after each intermediary dense block.
Since less convolution layers usually weaken the per-
formance with less parameters, we use iterative up-
and-down sampling framework to keep the performance
good. Notice that we use the same upsampling layers in
up-and-down sampling and the final upsampling layer,
so that the upsampling parameters are reused.

2.1. Dense Blocks

As shown in Figure 2, inside each dense block, the
higher layer will use the output previous layer as in-
put, and concatenate its input and convolution result
as output:

H0 = X

Hi = Concat(f(Hi−1),Hi−1)

Figure 2. Structure of Dense Block

where Hi is the output of ith layer, X is the block
input, Concat is the concatenation function, and f is
the convolution function. Notice that if there are n
layers inside the dense block, and the output depth of
each layer is k, then the final output depth will be nk.

For DENSEBLOCK, the input depth is set to be
64, and we set n = 8, k = 16, which means the output
depth will be 128. For DENSEBLOCK-M, the input
depth is set to be 64, and we set n = 4, k = 16, which
means the output depth will be 64.

2.2. Upsampling

Instead of using interpolation, we apply the Sub-
Pixel Convolution as the upsampling methond. Given
a low resolution ILR : H ×W × C, after some convo-
lution operation we may get f(ILR) : H × W × Cr2.
As proposed in [5], an periodic shuffling operator can
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Figure 3. Result of example from Set5
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Figure 4. Result of example from Set14

be applied on f(ILR) : H ×W × Cr2 to rearrange the
tensor to IHR : rH × rW × C. The advantage of sub-
pixel convolution is computational efficient and make
more use of previous convolution results.

In order to investigate the effect of upsample frame-
work, we implemented Pre-upsampling SR and Itera-
tive Up-and-down Sampling SR based on the same net-
work architecture. For Pre-upsampling SR, we move
the upsample layer to the beginning of the model. For
Iterative Up-and-down Sampling SR, we add a upsam-
ple and downsample layer pair after each cascading
blocks. The downsample is implemented by interpo-
lation. The problem with Pre-upsampling is that it
increase the memory usage substantially, so we decide
to drop the pre-upsampling framework. The Iterative
Up-and-down Sampling performs better if the network
is relatively simple, so we decide to use Iterative Up-
and-down Sampling in our ECDN-M model.

2.3. Optimizer, learning rate and loss function

We use ADAM as our optimizer with adaptive learn-
ing rate. The formula of learning rate is given by

lrnew = lrold × (
1

2
)

s
d

where s is the number of steps it has refined and d is
the decay factor provider by user, which is 400000 in
our case. We choose L1 as our loss function. All of
these settings are the same as CARN.

3. Experiments

3.1. Data

We use DIV2K [6] as our training data and Ur-
ban100 [3] as test data. We also use Set5, Set14 and
B100 [3] as benchmark test dataset to evaluate CARN
model and our customized models. These data are the
popular choice of super resolution.
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Figure 5. Result of example from B100

Model LPIPS score PSNR score # parameter training time (GPU-day)
CARN 35.7 8875 1591963 fully trained (4)
CARN_M 36.1 8854 414811 fully trained (4)
CARN_103000 36.0 8852 1591963 1
CARN_M_103000 37.3 8822 414811 1
ECDN (ours) 35.7 8702 694555 fully trained (2.5)
ECDN_M (ours) 36.8 8814 396955 fully trained (2.5)
ECDN (ours) 36.8 8741 694555 1
ECDN_M (ours) 37.8 8795 396955 1

Table 1. Quantitative result of CARN and our model

3.2. Metrics

Choosing an appropriate measure is necessary for a
super resolution model to grow on a right track. Tradi-
tionally, pixel-based metrics like PSNR and SSIM are
used since they are easy to set up in the deep learning
scenario. However, such metrics assumes pixel inde-
pendence and therefore do not work well in the super
resolution tasks.

In our project, we use Learned Perceptual Image
Patch Similarity (LPIPS) [9] metric. It trains on a
special dataset that they collected via two tests: 2 al-
ternative forced choice (2AFC) test and just notice-
able difference (JND) test. 2AFC allows the data to
be labelled close to human judgment, while JND al-
leviates the subjectivity of participants. The insight
into perceptual similarity is the key to the success of
this metric. Also, the use of deep neutral network like
VGG and AlexNet helps quantify perceptual similarity
as the distances.

Despite the good performance of selecting better re-
sults, LPIPS metric is fairly memory expensive. It
needs about 10GB each time we set checkpoints ev-
ery 1000 steps. Therefore, it might be a better choice
to use it as a way of comparing different models instead
of a loss function during training.

3.3. Results

The original high resolution image and super reso-
lution image pairs are shown in Figure 3, 4 and 5, to-
gether with their PSNR and perceptual distance values
in Table 1. Note that the LPIPS and PSNR score are
the sum of scores for individual image in Set5, Set14
and B100.

4. Implementation
Since Densenet has the advantage of reusing fea-

ture maps from preceding layers and avoiding the re-
learning of redundant features, we implement and ap-
ply Densenet in our model. Instead of three local cas-
cading blocks in [1], we use three densenet blocks, and
at the end of each densenet block, a 1× 1 convolution
layer is applied so that the input and output dimen-
sions are both 64. Also we use Iterative Up-and-down
Sampling in our ECDN-M model. The way of connect-
ing dense blocks in our model is the same as the way
of connecting cascading blocks in [1].

Moreover, to use LPIPS, we write a compare pro-
gram to evaluate the performance of models on Set5,
Set14 and B100. the model with lowest LPIPS score is
the best. It will also calculate PSNR score for reference.
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It’s lightweight and can run on our own computers.
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